2021 年 11 月 28 日

【教學】高一數學補充:算幾不等式的證明

同學們在高一上學期時,已經學過兩項的算幾不等式,再進階一點則為三項的算幾不等式。我們發現,兩項的情況無論是用「代數」或是「幾何」證明都相當容易。然而,多了一項後,難度便高出了不少。

無論是兩項或三項,都只是算幾不等式的特例。那麼要如何確定,n項也會是對的呢?這個部份要等到同學學到第二冊的數學歸納法,才能夠進行嚴謹的論證。以下將演示數個證明方法,有些較為直觀,有些則頗為神奇不容易想到,其巧思實在令人嘆為觀止。

網路上相關資訊已不勝枚舉,然而現代人不缺資訊,而是須要趨動自己學習的習慣。因此我嘗試使用自媒體工具,一方面分享所學,另一方面鞭策自己精進專業。

證明方法1:向前向後歸納法

證明方法2

證明方法3:Ehlers證法

證明方法4

更多高中數學教學文章,請參閱觀念數學學習專區

站長簡介

我是一名中學數學老師,已有近二十年高中數學教學經驗。教數學是我的職業也是興趣,因此我創立了「斜槓教師的教育學習網」一方面分享教育與生活,另一方面也分享數學。

發佈留言

發佈留言必須填寫的電子郵件地址不會公開。 必填欄位標示為 *

這個網站採用 Akismet 服務減少垃圾留言。進一步了解 Akismet 如何處理網站訪客的留言資料

返回目錄