輕鬆談如何教學二項式定理?

「組合與二項式定理」是108課綱第二冊的內容,這個定理我教了好多年,為了寫這篇文章,我重新research了一遍,再次體認到,當知道得愈多,愈能辨識到自己的無知。

對於古人的智慧,我只能用震撼兩個字形容,不得不說,數學真是一座大寶庫,蘊涵源源不絕的思想泉源。

在課堂上,我時常鼓勵學生,多問為什麼,在我能力所及,我一定設法回答學生提出的任何問題。

數學絕對是一門「說理」的學問,差別在於我們的能力能回答到什麼程度而已。

提出好的問題,其價值不亞於解決一道難題,甚至有過之而無不及。

例如我們聽過的一些猜想,像是「黎曼猜想」、「哥德巴赫猜想」,就是數學家提出來,但無法證明其是否正確且亦無法推翻的問題,流傳至今,砥礪著人們的智慧。

一旦完成證明,猜想就會變成「定理」。例如有名的「費瑪最後定理」,就是懸疑近三百年的猜想,最後由英國數學家威爾斯給出證明從而變成定理的例子。

人們對於偉大問題的重視,正如歷史對哥德巴赫猜想的形容可見一斑:

數學是科學之母,數論是數學的皇后,而哥德巴赫猜想是皇后皇冠上那一顆璀燦的明珠。

因此,這篇文章我們將以這樣的標準來介紹二項式定理,亦即,從問題出發來理解數學:這是誰發現的?為什麼會發現這個問題?這個定理有何用途?如何確定這個定理是對的?

教科書通常在同一個主題無法呈現出太多歷史脈絡,甚至非常單一地介紹一、兩位相關的數學家。

在這個系列文章,你會看到一個問題牽涉到的範圍比我們所知道的大得多。

但因為我是鎖定中學生看得懂的內容為主,目標是引起學生學習的興趣,太專業的部份僅留下連結供有興趣的讀者自行參考。

當然,不僅這篇文章,我在這個系列的每篇文章都會用這種方式來書寫。

閱讀全文 →