2023 年 2 月 7 日

高二數學第3A冊(108課綱)-數位教材+網路資源整合,適合學生自主學習

前言

這個頁面提供高中數學數位教材,方便學生自學使用。在此之前,我已經編寫了第一冊第二冊的部份,且以google搜尋關鍵字:高中數學第1冊、高中數學第2冊,皆能在第一頁找到這兩篇文章。

這一冊我做了兩個調整:一是我改採用龍騰版教材的目錄,原因很單純,因為我最常使用龍騰版的教材上實體課。另一則是,我採用了Masjax外掛程式編寫數學符號,因此將大幅降低圖片的使用。

數位教材不可能完全取代實體課程,只能扮演輔助的角色。會想要編寫這一套教材的原因也有兩個,一是我個人備課時的紀錄,另一則是我想強化教材「觀念」及「歷史觀點」的部份並且分享「學習方法」、推廣數學科普書籍,避免初學者盲目大量演練題目,陷入見樹不見林的學習模式中。因此,這裡不會放一堆基礎例題供學生演練,而是從問題出發思考,如果有必要則會舉例說明。

由於我平常教學工作繁忙,這份教材將利用閒暇時間編寫,若你想獲得這份教材的更新通知,可於文章下方訂閱「高中數學學習資源電子報」。

若想接收關於高中數學線上教學的資訊,可加入以下line@官方帳號

適合「自然組」或「商管學院」的學生

單元01 弧度量

弧度量的定義

習慣上,「角」的測量單位為「度」,相信同學們也用得很習慣了。在此我提出幾個問題作為我們這一節的學習目標:

1. 當我們寫\(30^{\circ}\)與\(30\) 所代表的意思是否相同?

我時常看到初學的學生會自動將「度」省略,這是常見的錯誤。一個粗淺的判斷,如果這兩者相同,那為何還要介紹「度」這個符號呢?數學家用字是很精準的,不可能如此累贅。因此,我們可以初步判斷,\(30^{\circ}\)與\(30\)是不一樣的。

2. \(30^{\circ}\)是實數嗎?

如果是的話,那麼\(30^{\circ}\)應該畫在數線的什麼位置呢?它算是有理數還是無理數呢?
類比一下,我們知道30是一個實數,但如果寫成「30公分」,我們似乎不會說「30公分」是一個實數。也就是說,前面的30表示實數,後面的「公分」是單位,並且我們知道這是用來測量「長度」的單位。
同樣道理,「\(30^{\circ}\)」是一個測量「角度」的量,我們不會說「\(30^{\circ}\)」是一個實數。

3. 如何描述清楚「角度」與「數字」的函數關係?並且畫出其函數圖形?

這便是我們接下來學習的重點。因為三角函數是定義在「角度」上的函數,我們要將其畫在坐標平面,則必須將角度畫在「\(x\)」軸上,但是角度不是實數要怎麼畫上去呢?
這便是這一節的目的,將「角度」與「實數」做對應,讓我們可以將角度畫在「\(x\)」軸上。
這個與角度對應的實數就是這一節要介紹的「弳」(又稱「弧度」)。

4. 如何定義「弳」?

首先我們來看一下半徑為 \(r\) 的圓,看看角度與長度要如何對應:

我們知道,圓一圈是「\(360^{\circ}\)」,圓周長是「\(2\pi\times r\)」
對於圓心角為 \(\theta^{\circ}\) 的弧長為
$$2\pi\times r\times\frac{\theta^{\circ}}{360^{\circ}}=(2\pi\times\frac{\theta^{\circ}}{360^{\circ}})\times r$$

由於我們關注的是「角度」,不會受到半徑大小的影響。因此\(\theta^{\circ}\) 會對應到實數\(2\pi\times\frac{\theta^{\circ}}{360^{\circ}}\)

我們便以實數 \(2\pi\times\frac{\theta^{\circ}}{360^{\circ}}\)來表示角度 \(\theta^{\circ}\)

也就是說$$1^{\circ}=\frac{\pi}{180}(弳)$$ 或是 $$1(弳)=(\frac{180}{\pi})^{\circ}$$

我們可以按按計算機,看看1弳大約是幾度:$$1弳=(\frac{180}{\pi})^{\circ}\approx 57.2958^{\circ}$$

將「度」與「弳」兩種單位快速換算是基本能力,初學應多加練習。

弧長與扇形面積

接下來我們來談談,如何計算扇形的弧長與面積。這部份在國中三年級的課程已有介紹,我們在高中階段試著用「弳」這個單位寫看看。如下圖所示,

用「弳」來表示扇形的「弧長」及「面積」,其形式看起來更為簡潔。近年大考命題會測試學生是否能夠清楚區分這兩種單位的差別。

以上觀念建立好了,接下來就可以好好演練題目了。這一節的題目有不少變化也不乏難題,請先將課本題目做熟後,再做其他延伸。

以弳為單位的三角比

接下來來談談三角比。這裡不是新的內容,只是換成不同的角度單位來表示而已。學生必須練習到能夠熟練地將「弳」自然地想到對應的位置,這一節大致如此。

學生在學習這一段內容時必須辨別「弳度」與「度」的三角比的差異,例如以下這道題目,有助於釐清觀念:

下列哪些不等式成立?
(1) \(sin{\pi}>sin{(\pi)^{\circ}}\)
(2) \(cos{\pi}>cos{\pi}^{\circ}\)
(3) \(cos{\pi}^{\circ}>sin{\pi}^{\circ}\)
(4) \(tan{\pi}>tan{\pi}^{\circ}\)
(5) \(sin{\frac{\sqrt{3}}{2}}<\frac{\sqrt{3}}{2}\)

選項(1):首先,我們要思考 \(\pi\) 與 \(\pi^{\circ}\) 的差別是什麼呢?
\(\pi\) 對應到 \(180^{\circ}\)、\(\pi^{\circ}\approx 3.14^{\circ}\)
因此 $$sin{\pi}=0<sin{\pi^{\circ}}$$

選項(2):$$cos{\pi}=-1<0<cos{\pi^{\circ}}$$
選項(3):因為 \(0^{\circ}<\pi^{\circ}<45^{\circ}\),所以
$$cos{\pi^{\circ}}>sin{\pi^{\circ}}$$

選項(4):$$tan{\pi}=0<tan{\pi^{\circ}}$$
選項(5):因為 \(\frac{\sqrt{3}}{2}=sin{\frac{\pi}{3}}\approx sin1.047\),且sin \(\frac{\sqrt{3}}{2}\approx sin0.866\)。又因為 \(y=sinx\) 在第一象限為遞增函數,所以 $$sin{\frac{\sqrt{3}}{2}}<sin{\frac{\pi}{3}}=\frac{\sqrt{3}}{2}$$

單元02 三角函數的圖形

在各三角比都有定義的情形下,給定一個廣義角 \(x\),\(sinx\)、\(cosx\)、\(tanx\) 的值都隨之唯一確定,因此都可以視為 (x\) 的函數。依序稱為正弦函數、餘弦函數與正切函數。

要留意不可忽略這些函數的名稱,因為曾經就有大考題問某個角度的正切值是多少?
如果不知道正切值就是 \(tanx\),那麼這一題即使會寫也答不上來。

繪製三角函數圖形的要點

  • 要點1:必須熟悉象限角的三角函數值
  • 要點2:觀察圖形的「定義域」、「值域」、「週期」、「振幅」、「對稱性」
  • 要點3:圖形的平移與伸縮

網路資源

單元03 三角的和差角公式

這個單元有四個重點

重點1:什麼是「正弦」與「餘弦」函數的和差角公式,如何推導?
\begin{aligned}
sin(\alpha\pm\beta) &=sin\alpha cos\beta\pm cos\alpha sin\beta \\
cos(\alpha\pm\beta) &=cos\alpha cos\beta\mp sin\alpha sin\beta
\end{aligned}

網路資源

重點2:如何推導出「正切」函數的和差角公式?

網路資源

重點3:如何推導出「正弦」、「餘弦」、「正切」函數的二倍角公式?
以及「正餘弦」的半角、三倍角公式?

這裡的公式看似很多,其實本質就是「餘弦定理」以及「三角函數的轉換關係」,推導過程對於初學者是非常好的練習,切勿只是將公式背下來套用在題目上,而是要真正了解公式的來龍去脈,學習到公式的內涵本質而非只是表象的形式。

網路資源

重點4:如何使用以上公式解決問題?

公式的形式及推導熟悉後,可以藉由適量地練習一些題目強化觀念並且熟記公式。首先要先將課本的範例、習題做過一遍,如果心有餘力,可再另外採購題本提升自己的解題技巧。

單元04 正餘弦的疊合

這個單元主要介紹如何將正弦函數 \(y=sinx\) 及餘弦函數 \(y=cosx\) 複合成一個函數。我們處理的一般形式為 $$y=asinx+bcosx$$

學習要點1:如何將 \(y=asinx+bcosx\) 複合成以下形式

$$y=asinx+bcosx=\sqrt{a^2+b^2}sin(x+\theta)$$
其中 \(\theta\) 滿足 $$cos\theta=\frac{a}{\sqrt{a^2+b^2}}, \ sin\theta=\frac{b}{\sqrt{a^2+b^2}}$$

學習要點2:探討 \(y=asinx+bcosx\) 極值及極值發生的位置(角度)

我們知道,
\begin{aligned}
當 &x+\theta=2k\pi+\frac{\pi}{2} 時,y 有最大值 \sqrt{a^2+b^2} \\
當 &x+\theta=2k\pi+\frac{3\pi}{2} 時,y 有最小值-\sqrt{a^2+b^2}
\end{aligned}

我們不妨先考慮 \(k=0\) 的情況:當 \(sinx=sin(\frac{\pi}{2}-\theta)\) 時,其函數值最大。

另一方面,當 \(sinx=sin(\frac{3\pi}{2}-\theta)\) 時,其函數值最小。

其中 $$sinx=sin(\frac{\pi}{2}-\theta)=cos\theta=\frac{a}{\sqrt{a^2+b^2}}$$
$$sinx=sin(\frac{3\pi}{2}-\theta)=-cos\theta=-\frac{a}{\sqrt{a^2+b^2}}$$

單元05 指數函數

課程內容

  • 何謂指數函數?
  • 如何描繪指數函數的圖形?
  • 指數函數的圖形有何特徵?
  • 指數函數有哪些應用?
    指數方程式、指數不等式、指數函數在金融的應用
  • 課外補充:如何證明e是無理數?
  • 作業討論

單元06 指數與對數律

課程內容

  • 什麼是對數,如何定義?
  • 對數律與換底公式
    公式推導與應用:換底公式
  • 常用對數與科學記號
    如何判斷一個很大的數是幾位數?
  • 作業討論

單元07 對數函數

課程內容

  • 什麼是對數函數?
  • 如何描繪對數函數的圖形?
  • 對數函數的圖形有何特徵?
  • 對數函數有哪些應用呢?
  • 作業討論

單元08 平面向量

課程內容

  • 向量的表示法:「幾何表示法」與「座標表示法」
  • 向量的加法與減法:坐標表示及其性質。
  • 向量的係數積:定義及基本性質
  • 向量的線性組合
  • 向量的分點公式
  • 作業討論

單元09 平面向量的運算

課程內容

  • 什麼是向量的內積?為什麼要這樣定義呢?
  • 何謂向量的正射影?
  • 什麼是柯西不等式
    課外補充:一般柯西不等式的證明
  • 二階行列式的幾何意義為何?

單元10 二元一次聯立方程式

課程內容

  • 什麼是加減消去法?
  • 什麼是克拉瑪公式?
  • 何謂二元一次聯立方程式的幾何意義?
  • 二階行列式有哪些性質?
  • 二元一次聯立方程式的向量觀點
返回目錄